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It was demonstrated in [i] that flow of a rarefied gas in a finite channel has been 
considered only over a narrow Knudsen number range or in coarse approximations valid only 
for sufficiently long channels. In that study the problem was solved for a wide range, but 
in the approximation that molecules entering the channel through its faces have an absolute- 
ly Maxwellian distribution function, which also limits application of its results to finite, 
although sufficiently long channels. In connection with this there is a need for a precise 
solution of the given problem over the entire range of Knudsen numbers with consideration 
of flow formation in the region of the vessel near the input. 

i. We will consider a planar channel of length ~, height 2a, infinite in the z-direc- 
tion, connecting two semi-infinite vessels of one and the same gas (Fig. i). Within the 
vessels at a sufficient distance from the channel the gas is maintained under equilibrium 
conditions at pressures Pl and P2 and identical temperatures T. Under the action of the 
pressure head the gas moves in the x-direction. 

We introduce the scale factors: a, nl, ~i/2 = (2RT)I/2, ni~-3/2, ~i = nlmvll/2 for the 
length, density n, velocities e and u, distribution function f and viscosity coefficient N. 
Here R is the ideal gas constant, m is the mass of a molecule, v = (SRT/~) I/2 is the thermal 
velocity of a molecule, i I is the molecular free path length in the first vessel. All fur- 
ther expressions will be written using these scaling factors. 

We assume that the relative pressure head is much less than unity (IP2 - Pll/Pl << i) 
and that all gas molecules are reflected from the walls of the channel and vessels diffusely. 
For the distribution function equation we use the BGK model of the Boltzmann equation [2] 

eO//Or = 6(/0 - - / ) ,  
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Fig. i 

where ~ = ]/r~a/2%1 is the reciprocal Knudsen number, ]~ c) = (n(r)/~3/2) exp [--(e- u(r))2]; 

s;s 's;s n(r) /(r,  c)dc; u ( r ) = ~  / (r, c) e de; c i s  t h e  v e l o c i t y  o f  a m o l e c u l e ,  r = r(x, y). 

A p r o c e d u r e  was p r e s e n t e d  in  [1] f o r  t i n e a r i z i n g  t h e  BGK e q u a t i o n  and d e r i v i n g  i n t e g r a l  
e q u a t i o n s  f o r  moments o f  t h e  d i s t r i b u t i o n  f u n c t i o n .  T h e r e f o r e  we w i l l  p r e s e n t  o n l y  t h e  
f i n a l  r e s u l t :  

(i = i, 2, 3, 4), 

q~ = (n - -  l ) p J A p ,  q2 = u ~ p J h p ,  qa = u y p J h p ,  q4(x) = 

= (nw(x )  - -  i ) p l / A  p 

(n W i s  t h e  r e d u c e d  number o f  m o l e c u l e s  i n c i d e n t  upon a u n i t  a r e a  pe r  u n i t  t i m e ) .  We w i l l  
a l s o  omi t  t h e  cumbersome e x p r e s s i o n s  f o r  Ki~ and ~ i ,  s i n c e  t h e y  a r e  a l s o  p r e s e n t e d  in  [ 1 ] .  

J 
The g i v e n  i n t e g r a l  e q u a t i o n s  d i f f e r  f rom t h o s e  o f  [1] in  t h a t  h e r e  we have i n t r o d u c e d  i n t e -  
g r a t i o n  ove r  t h e  p o r t i o n  " v i s i b l e "  f rom t h e  p o i n t  (x ,  y)  o f  t h e  r e g i o n  i n c l u d i n g  b o t h  t h e  
c a v i t y  c h a n n e l  and t h e  v e s s e l .  The i n t e g r a l  e q u a t i o n s  o b t a i n e d  can be s o l v e d  by t h e  K r y l o v -  
Bogo lyubov  method [ 1 ] .  But t h e  p r e s e n c e  o f  i n f i n i t e  p r e - e n t r a n c e  r e g i o n s  c r e a t e s  s i g n i f i -  
c a n t  c o m p u t a t i o n  d i f f i c u l t i e s .  Th i s  i s  r e l a t e d  f i r s t ,  t o  an i n c r e a s e  in  t h e  number o f  c e l l s  
i n t o  which  t h e  f low f i e l d  i s  d i v i d e d .  Second,  in  t h e  n u m e r i c a l  c a l c u l a t i o n  i t  was n e c e s s a r y  
t o  l i m i t  o u r s e l v e s  t o  a f i n i t e  p r e - e n t r a n c e  r e g i o n ,  one such  t h a t  r e q u i r e d  c a l c u l a t i o n  a c c u -  
r a c y  f o r  t h e  f low f i e l d  would be a s s u r e d  a t  l e a s t  w i t h i n  t h e  c h a n n e l  and in  r e g i o n s  a d j a c e n t  
t o  t h e  c h a n n e l  i n p u t  s e c t i o n s .  As a n a l y s i s  o f  t h e  r e s u l t s  o b t a i n e d  w i l l  show, f o r  an a c c u -  
r a c y  o f  2% i t  i s  n e c e s s a r y  t h a t  t h e  b o u n d a r y  in  t h e  p r e - e n t r a n c e  r e g i o n  be removed f rom t h e  
c h a n n e l  i n p u t  s e c t i o n  by n o t  l e s s  t h a n  40 m o l e c u l a r  f r e e  p a t h  l e n g t h s  and n o t  l e s s  t h a n  a 
d i s t a n c e  Ca. 

With i n c r e a s e  in  c h a n n e l  l e n g t h  L = s  and r a r e f a c t i o n  p a r a m e t e r  5 t h e  n u m e r i c a l  d i f -  
f i c u l t i e s  i n c r e a s e  s e v e r e l y ,  so t h a t  s p e c i a l  s t u d y  of  t h e  c o r r e s p o n d i n g  l i m i t i n g  c a s e s  i s  
n e c e s s a r y .  

2. When t h e  c h a n n e l  l e n g t h  i s  much g r e a t e r  t h a n  t h e  m o l e c u l a r  f r e e  p a t h  l e n g t h  (6L >> 
1) ,  t h e  f low f i e l d s  n e a r  t h e  f a c e s  and in  t h e  p r e - e n t r a n c e  r e g i o n s  become s i m i l a r  a t  f i x e d  

and d i f f e r e n t  L. As was shown in  [ 1 ] ,  t h i s  can be used  as a b a s i s  t o  o b t a i n  a r e l a t i o n -  
s h i p  between the flow fields and flow rates in channels of different length, thus avoiding 
computer calculation of a large number of variants, which would require significant machine 
time expenditures. We write the reduced gas flow rate in the form 

1 

G = -~p  p lL  ~ u x (x, y) dy = L +ALL G~ ( 2 . 1 )  
- - 1  

(where G~ is the reduced flow rate in an infinite channel, and AL is a value independent of 
channel length which is definable from analysis of the flow field [I]). It is evident from 
analysis of numerical calculations that for an accuracy of 2% the necessary condition for 
use of Eq. (2.1) is the inequality 6L e 20, L e 4. Table 1 presents values of G~ and AL for 
certain 6. We will note that the minimum channel length for which the above considerations 
are valid may be comparable to AL. It is evident from Table 1 that the divergence from flow 
rate calculation results obtained directly for an infinite channel [3] does not exceed the 
calculation uncertainty. 

3. In the limiting case of a continuous medium (6 + ~) the gas flow is described by 
the system of Navier-Stokes equations [4], to which the continuity equation is added. In 
solving the kinetic equation we have limited ourselves to the approximation linear in pres- 
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TABLE 1 

6 Lmin AL Gc~ Goo [3] 

0,t 
0,2 
0,5 
t,0 
2,0 
4,0 

200 
t00 
40 
20 
10 
5 

7,04 
5,34 
4,04 
3.26 
2,86 
2,88 

i,79 
1,63 
1,53 
t,58 
1,84 
2,43 

i,8079 
t,6408 
t,5389 
t,5942 
t,8440 
2,4472 

sure head. Therefore in the equations of the mechanics of a continuous medium we retain 
only terms of first order smallness in hp/p~. Using the dimensionless quantities, we obtain 

(l/8)(O~uJOx ~ + 8~u=/Oy ~) = (l/p~)Op/Ox, ( 3 . 1 )  
(~/8)(O~u~/Ox ~ § O~u~/@D = ( l@O@/@,  ~u~'Ox + O u J @  = o. 

On the channel and vessel walls we apply the attachment condition u = O. At infinite dis- 
tance from the channel in both vessels the gas has different pressures p~ and p=. 

To solve system (3.1) it will be convenient to transform to the variables of vorticity 
and flow function ~ [5]: 

o = ( i /8 ) (~uJ@ --  Ou~/~)x), ( t /5)u~ = ~ / @ ,  (i/8)uy = --#~/~x.  

I t  can e a s i l y  be shown t h a t  sy s t em ( 3 . 1 )  c o r r e s p o n d s  t o  t h e  sys t em of  [5] 

A~ = 0, A~---- o. (3.2) 

Since the flow field is symmetrie [i], system (3.2) was solved in the upper right quar- 
ter of the channel and vessel. In this case the boundary conditions take on the form 

x = L/2, 0 ~ y ~ i, ~/~x = 0, 0~/0x ---- 0; (3.3) 

L , / 2 ~ . x ~  oc, y =  O, ~ =  t/2, r  O; 

L/2 <~ x ~ L,  y = t ,  ~ = O, 3 j g @  = 0; 

x = L,  l ~ y ~ O ,  ~ = O, a ~ / O x =  O; 

/ x  ~ + y~ -+ co, a~/'Ox = O, OqF@ = O. 

The f u n c t i o n  ~(x ,  y)  i s  d e f i n e d  t o  t h e  a c c u r a c y  of  an a r b i t r a r y  c o n s t a n t ,  so t h a t  a l o n g  t h e  
b o u n d a r y  o f  t h e  f low f i e l d  t h i s  c o n s t a n t  i s  t a k e n  e q u a l  t o  z e r o .  I n  l i g h t  o f  t h e  a t t a c h m e n t  
c o n d i t i o n  t h e  normal  d e r i v a t i v e  o f  $ must  e q u a l  z e r o  on t h e  e n t i r e  gas  f low b o u n d a r y .  On 
t h e  a x i s  o f  symmetry  y = 0, ~ = 1 /2 .  Th i s  i m p l i e s  t h a t  t h e  gas f low r a t e  t h r o u g h  t h e  c h a n n e l  
c r o s s  s e c t i o n  i s  a lways  e q u a l  t o  u n i t y .  The unknown q u a n t i t y ,  t he  p r e s s u r e  head  

o o  

hp 2 [ 0o3 dx. (3.4) 
- -  ~- 

-7~-~ - Y  J ~' ~=o 
L/2 

Knowing the pressure head we find G, proportional to ~. 

In the numerical solution of Eq. (3.2), as in the case of the kinetic equation, it is 
necessary to limit oneself to a finite flow region. The dimensions of the region considered 
can be decreased if in place of the last condition of Eq. (3.3) upon the boundary we use the 
asymptote of the flow field, which can be obtained by taking the input section as a point 
mass source. Then for m and ~ we have 

[(x -- L) 2 __y2] (x -- L)2+ y2 + arctg y .  

C a l c u l a t i o n s  show t h a t  f o r  2% a c c u r a c y  t h e  d i m e n s i o n s  o f  t h e  f low r e g i o n  c o n s i d e r e d  must  be 
f i v e  t i m e s  t h e  h e i g h t  o f  t h e  c h a n n e l .  

Sys tem ( 3 . 2 )  w i t h  bounda ry  c o n d i t i o n s  ( 3 . 3 )  was s o l v e d  on a r e g u l a r  g r i d  w i t h  a d i f f e r -  
ence  scheme 

l 
(Oij = -~- ((0i--I, j "~- O)i+l, j -~- O)i,j-- a ~- (Oi,jq-l) , 

I 

(o) u = co (x .  yj ) ,  ~ j  = ~ (x~ ,  ~ ) ,  Ax = x~+~ - -  x: ) .  
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TABLE 2 

L A 

2 0,t8i6 0,3088 
t0 0 , 2 8 5 4  0,8444 
20 0,3076 t,016 
60 0,3244 1,t55 
co 0,3334 t,257 

TABLE 3 

O 

6 L 

2 iO 20 60 

0,0t 0,39t 
0,t 0,42t 
1 01601 
4 

% 
36 % 
60 % 

t,00 
t,02 
t,19 
t ,89 

0% 
5% 

t9 % 
37 % 

t ,35 
t,28 
t ,36 
2,t3 

% 

12 % 
25 % 

t, 88 
t,57 
t,50 
2,32 

0% 
t %  
5% 

i t  % 

Knowing the dependence of m on coordinates and using Eq. (3.4), we have G = LpI/A p = A6. 

Table 2 presents values of the proportionality coefficient A. For L = ~, this quantity 
can be obtained analytically, by direct solution of Eq. (3.1). 

To merge the results of solution of the kinetic equation and the Navier-Stokes equation 

we represent the gas flow rate as 

C = 8(A + ok/a). (3 .5)  

The q u a n t i t y  o c h a r a c t e r i z e s  t h e  c o n t r i b u t i o n  o f  s l i p  t o  t h e  f l o w  r a t e .  We f i n d  i t s  v a l u e  
from the condition that the flow rate obtained by solution of the kinetic equation at maxi- 
mum 5 = 4 has the form of Eq. (3.5). It is evident from Table 2 that with increase in chan 
nel length the contribution of slip to the flow rate increases. Estimates show that the un- 
certainty of Eq. (3.5) does not exceed 2.5% in the range 6 e 4. 

4. Results of flow rate calculation both directly by solution of the kinetic equation, 
and by Eqs. (2.1) and (3.5) are shown in Fig. 2. In the free molecular regime the flow rate 
coincides with that of [6] within the limits of its accuracy. For comparison the dashed 
line shows the results of [i], which did not consider a change in the distribution function in 
the pre-entrance region. For various values of L and 6, Table 3 shows exact flow rate 

6 , J 

,3 II I 
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values (left-hand column for each L) and relative difference between precise and approximate 
values from [i] (right-hand columns). It is evident from Fig. 2 and Table 3 that for short 
channels and large 6 the pre-entrance region exerts a significant effect on gas flow forma- 

tion. 

We will note that for large channel lengths (L > I0) the dependence of G upon 6 is non- 
monotonic. For 6 ~ 0.5 there is a minimum, which has been termed the Knudsen minimum; at 
L ~ i0 this minimum disappears. Of more than slight interest is the flow rate through a 
slit (L = 0). This case was considered in detail in [7]. Here we will limit ourselves to 
presentation of expressions which interpolate the numerical and analytical results over the 
entire Knudsen number range: 

M/Mo = I - -  0 . t58  In 6/(1 + 0.0046 In 6) + (33/2/8)6 

(M, M 0 a r e  t h e  gas  mass f l o w  r a t e  a t  a r b i t r a r y  number 6 and i n  t h e  f r e e  m o l e c u l a r  r e g i m e ) .  

5.  We w i l l  c o n s i d e r  t h e  f l o w  f i e l d .  F i g u r e  3 shows t h e  change  i n  v e l o c i t y  p r o f i l e  f o r  
v a r i o u s  5 i n  a c h a n n e l  o f  l e n g t h  L = 2. In  t h e  r e g i m e  c l o s e  t o  f r e e  m o l e c u l a r  and up t o  t h e  
i n t e r m e d i a t e  r e g i m e  t h e  p r o f i l e s  a r e  c l o s e  t o  homogeneous .  Wi th  i n c r e a s e  i n  5 a f t e r  t h e  i n -  
t e r m e d i a t e  r e g i m e  t h e  d e g r e e  o f  i n h o m o g e n e i t y  i n c r e a s e s  s e v e r e l y .  The r e l a t i v e  d i f f e r e n c e  
i n  v e l o c i t y  p r o f i l e s  in  v a r i o u s  c h a n n e l  s e c t i o n s  d e p e n d s  w e a k l y  on 5. F o r  5 = 0 .01  on t h e  
c h a n n e l  a x i s  t h e  v e l o c i t y  c h a n g e s  by 5%, and a t  ~ = 4,  by 7%. The v e l o c i t y  p r o f i l e  b e h a v e s  
in  an a n a l o g o u s  manner  f o r  o t h e r  c h a n n e l  l e n g t h s .  

P r e s s u r e  i s  shown as  a f u n c t i o n  o f  l o n g i t u d i n a l  c o o r d i n a t e  on t h e  c h a n n e l  a x i s  f o r  L = 
10 i n  F i g .  4,  where  f o r  a l l  5 i n  t h e  c h a n n e l  t h e  f u n c t i o n  i s  l i n e a r ,  t h e  s l o p e  o f  t h e  
s t r a i g h t  l i n e  d e p e n d i n g  w e a k l y  on 6. I n  t h e  p r e - e n t r a n c e  r e g i o n  a t  s u f f i c i e n t l y  :Large d i s -  
t a n c e s  f rom t h e  c h a n n e l  t h e  p r e s s u r e  t e n d s  t o w a r d  i t s  v a l u e  a t  i n f i n i t y  by a 1 / x  2 l aw.  
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